Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Condensate Recovery Pressure Loss through piping formula

Pressure Loss through piping formula

$$\large{ p_l = \frac { 1000 \; \mu \; l \; v_c{^2} } {2\;d \; V_{temp} } }$$

Where:

$$\large{ p_l }$$ = condensate pressure loss

$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient

$$\large{ l }$$ = pipe length

$$\large{ v_c }$$ = condensate velocity

$$\large{ d }$$ = pipe inner diameter

$$\large{ V_{temp} }$$ = temporary specific volume variable

Velocity Through Piping formula

$$\large{ v_c = \frac { 1000\;m_c \; V_{temp} } { 3.6\; \pi \; { \left( \frac {d}{2} \right) ^2 } } }$$

Where:

$$\large{ v_c }$$ = condensate velocity

$$\large{ m_c }$$ = condensate load

$$\large{ V_{temp} }$$ = temporary specific volume variable

$$\large{ \pi }$$ = Pi

$$\large{ d }$$ = pipe inner diameter

Condensate Recovery Velocity through piping formula

Pressure Loss through piping formula

$$\large{ p_l = \frac { \mu \; l \; v_s{^2} } {2\;d \; V_{temp} } }$$

Where:

$$\large{ p_l }$$ = steam pressure loss

$$\large{ \mu }$$  (Greek symbol mu) = friction coefficient

$$\large{ l }$$ = pipe length

$$\large{ v_s }$$ = steam velocity

$$\large{ d }$$ = pipe inner diameter

$$\large{ V_{temp} }$$ = temporary specific volume variable

pipe inner diameter formula

$$\large{ d = \sqrt { \frac { 4 } { \pi } \; \frac { m_c \; V_{temp} } {3600\;v_c} } }$$

Where:

$$\large{ d }$$ = pipe inner diameter

$$\large{ \pi }$$ = Pi

$$\large{ m_c }$$ = condensate load

$$\large{ V_{temp} }$$ = temporary specific volume variable

$$\large{ v_c }$$ = condensate velocity