Right Elliptic Cylinder

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • elliptic cylinder 2elliptic cylinder 6Elliptic cylinder (a three-dimensional figure) has a cylinder shape with elliptical ends.
  • 2 bases

Lateral Surface Area of a Right Elliptic Cylinder formula

Since there is no easy way to calculate the ellipse perimeter with high accuracy.  Calculating the laterial surface will be approximate also.

\(\large{ A_l \approx  h \;  \left(     2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) }   \right)   }\)

Where:

\(\large{ A_l }\) = approximate lateral surface area (side)

\(\large{ a }\) = length semi-major axis

\(\large{ b }\) = length semi-minor axis

\(\large{ h }\) = height

Surface Area of a Right Elliptic Cylinder formula

\(\large{ A_s \approx  h \;  \left(     2\;\pi \;\sqrt {\; \frac{1}{2}\; \left(a^2 + b^2 \right) }   \right) +  2\; \left( \pi \; a \; b \right)  }\)

Where:

\(\large{ A_s }\) = approximate surface area (bottom, top, side)

\(\large{ a }\) = length semi-major axis

\(\large{ b }\) = length semi-minor axis

\(\large{ h }\) = height

Volume of a Right Elliptic Cylinder formula

\(\large{ V = \pi\; a \;b\; h }\)

Where:

\(\large{ V }\) = volume

\(\large{ a }\) = length semi-major axis

\(\large{ b }\) = length semi-minor axis

\(\large{ h }\) = height

 

Tags: Equations for Volume