Engineering Notation

Written by Jerry Ratzlaff on . Posted in Algebra

Engineering notation is a way of writing large numbers  \(\large{ 1 2 3, 0 0 0 }\)  into smaller numbers  \(\large{ 1 2 3 \;x\; 10^3 }\)  where the power of 10 is multiplied by 3.

  • \(\large{\; 1 2 3 4. 5  = 1. 2 3 4 5  \times 10^3}\)
  • \(\large{\; 1 2 0  = .1 2  \times 10^3}\)
  • \(\large{\; 1, 2 0 0 = 1. 2  \times 10^3}\)
  • \(\large{\; 1 2, 0 0 0 = 1 2 \times 10^3}\)
  • \(\large{\; 1 2 3, 0 0 0 = 1 2 3 \times 10^3}\)
  • \(\large{\; 1 2 3, 0 0 0, 0 0 0 = 1 2 3 \times 10^6}\)
  • \(\large{\; 1 2 3, 0 0 0, 0 0 0 = .1 2 3 \times 10^9}\)