# Cantilever Beam - Concentrated Load at Free End

Written by Jerry Ratzlaff on . Posted in Structural

### Cantilever Beam - Concentrated Load at Free End Formula

$$\large{ R = V = P }$$

$$\large{ M_{max} \; }$$   (at fixed end)   $$\large{ = PL }$$

$$\large{ M_x = Px }$$

$$\large{ \Delta_{max} \; }$$   (at free end)   $$\large{ = \frac {P L^3} {3 \lambda I} }$$

$$\large{ \Delta_x = \frac {P} {6 \lambda I} \left( 2L^3 - 3L^2x + x^3 \right) }$$

Where:

$$\large{ I }$$ = moment of inertia

$$\large{ L }$$ = span length of the bending member

$$\large{ M }$$ = maximum bending moment

$$\large{ P }$$ = total concentrated load

$$\large{ R }$$ = reaction load at bearing point

$$\large{ V }$$ = shear force

$$\large{ w }$$ = load per unit length

$$\large{ W }$$ = total load from a uniform distribution

$$\large{ x }$$ = horizontal distance from reaction to point on beam

$$\large{ \lambda }$$   (Greek symbol lambda) = modulus of elasticity

$$\large{ \Delta }$$ = deflection or deformation