# Simple Beam - Two Equal Point Loads Unequally Spaced

Written by Jerry Ratzlaff on . Posted in Structural

### Simple Beam - Two Equal Point Loads Unequally Spaced Formula

(Eq. 1)  $$\large{ R_1 = V_1 }$$  max. when  $$\large{ \left( a < b \right) = \frac {P} {L} \left( L - a + b \right) }$$

(Eq. 2)  $$\large{ R_2 = V_2 }$$  max. when  $$\large{ \left( a < b \right) = \frac {P} {L} \left( L - b + a \right) }$$

(Eq. 3)  $$\large{ V_x \; }$$  when  $$\large{ \left( x > a \right) \; }$$  and  $$\large{ < \left( L - b \right) = \frac {P} {L} \left( b - a \right) }$$

(Eq. 4)  $$\large{ M_1 }$$  max. when  $$\large{ \left( a > b \right) = R_1 a }$$

(Eq. 5)  $$\large{ M_2 }$$  max. when  $$\large{ \left( a < b \right) = R_2 b }$$

(Eq. 6)  $$\large{ M_x }$$  max. when  $$\large{ \left( x < a \right) = R_1 x }$$

(Eq. 7)  $$\large{ M_x \; }$$  when  $$\large{ \left( x > a \right) \; }$$  and  $$\large{ < \left( L - b \right) = R_1 x - P \left( x - a \right) }$$

Where:

$$\large{ I }$$ = moment of inertia

$$\large{ L }$$ = span length of the bending member

$$\large{ a, b }$$ = length to point load

$$\large{ M }$$ = maximum bending moment

$$\large{ P }$$ = total concentrated load

$$\large{ R }$$ = reaction load at bearing point

$$\large{ V }$$ = maximum shear force

$$\large{ x }$$ = horizontal distance from reaction to point on beam

$$\large{ \lambda }$$   (Greek symbol lambda) = modulus of elasticity